
Multi Agent Deep Reinforcement 
Learning

By: Karkala Shashank Hegde
Guided by: Professor Keith Chugg



What is Multi agent RL?

http://www.youtube.com/watch?v=nQsJhOQKm-4


Markov Decision Process
● Consider a system which defines the interaction 

between a agent and its surrounding environment.
● The environment represents the state at time t as 

a vector st.
● The agent’s actions at time t can be represented 

as at.
● Reward is provided as a feedback by the 

environment as rt.
● This can be iterated to get values at next time step 

t+1.
● We also have a boolean value attached to the 

feedback, this denotes if the environment has 
reached a terminal state.



Mathematical Representation of agent and Environment
Agent can be considered a function of the state, and predicts the actions (or sometimes the probabilities of 
actions).

ie, π(s) → a

Sometimes, the policy can be stochastic instead of deterministic. In such a case, instead of returning a unique action a, the 
policy returns a probability distribution over a set of actions. But for this presentation we shall only consider the deterministic 
case.

The environment can be thought of two functions:

● Reward Function:

● Transition Probabilities:

Note the markov property of the the functions (The next value of the function only depends on the current value)

These functions are non 
stochastic. I.e., Reward 
for a state-action today 
is the same as tomorrow



Goal
Maximize immediate reward, rt? NO. Usually it would be beneficial to sacrifice immediate rewards if 
it would result in increased future rewards.

Thus we need “strategies” and not just search of actions that lead to maximum immediate reward.

Therefore we calculate the Q (for quality) value. This is the infinite sum of future discounted rewards 
if we used the current policy π. Let gamma γ be the discount factor

Therefore we need to adjust our policy to that maximises this Q value for every state action pair. I.e, 
our policy needs to take actions that maximise the Q value.



Note

● There are many other ways to get optimal policies, these include 
PPO, TRPO, IMPALA, Imitation learning, AlphaGo etc.

● For this presentation we shall only look at methods that optimize 
policies over Q values

https://arxiv.org/pdf/1708.05866.pdf

https://arxiv.org/pdf/1708.05866.pdf


Two part problem

1. Estimate Q value
2. Adjust Policy to maximize the estimated Q value



How to estimate Q value? 
Bellman equation (Fight On)!

https://towardsdatascience.com/reinforcement-learning-markov-decision-process-part-2-96837c936ec3

https://towardsdatascience.com/reinforcement-learning-markov-decision-process-part-2-96837c936ec3


Deep Q Networks (DQN)
● Use a Neural Network to estimate the Q value.
● For a discrete action space (eg. Up, Down, Left, Right), a greedy policy can 

be choosing an action that gives the maximum predicted Q value for a 
given state.

● Explore randomly sometimes to get unseen state-action pairs and their 
corresponding rewards.

● sample a batch of state, action and reward batch. 
● For a given set of state and action pair, calculate target Q value using 

Bellman eqn. 
● Use Mean Squared error to tune neural network.

https://arxiv.org/abs/1312.5602

https://arxiv.org/abs/1312.5602


DQN Limitation

● Cannot be used for Continuous action space.
● Since we use a greedy policy to select action that gives maximum Q value, the 

actions have to be countably finite.
● A large action dimension implies a large Q network, and we’ll have to do many 

forward passes to estimate Q for each action, just to select the next step



Solution for Continuous Action Space

● Use a Neural Network to 
model the policy π as well.

● Since the output layer can 
be Linear layer of any 
dimension, they can 
predict any N dimension 
action



Deep Deterministic Policy Gradients (DDPG)

Two Neural Networks:

● Q Network (Critic):
Estimates the Q value for a given state, action pair.
Calculate target using Bellman Eqn, update using MSE loss

● Policy Network (Actor):
Predicts the continuous action for a given state.
Directly use the negative Q value for the predicted action and given state 

as the loss.

https://arxiv.org/pdf/1509.02971.pdf

https://arxiv.org/pdf/1509.02971.pdf


Multi Agent Reinforcement Learning

A simple approach would be using multiple RL agents each maintaining its own 
actor critic pairs, each agent learns independently.

Problems:

● An agent should not have access to other agents states during execution
● For one agent, it’s surroundings forms the environment, therefore it’s 

environment would include all other agents. If these agents keep learning, the 
environment functions become stochastic.

● How to promote competition or cooperation between agents?



Multi Agent Deep Deterministic Policy Gradients 
(MADDPG)
Similar to the simple approach, each agent 
maintains a policy network and a Q network. 

During execution, each agent’s policy uses its 
own state space while predicting actions.

During training, for each agent, while estimating 
Q value, we concatenate every agent’s state 
and actions.

https://arxiv.org/pdf/1706.02275.pdf

https://arxiv.org/pdf/1706.02275.pdf


MADDPG (cont)

● Centralized training with decentralized execution
● Since each agent’s Q network takes every agent’s concatenated state and 

concatenated action, we can make the reward function non stochastic.
● Also, since each agent receives its own reward, it can form policies to be 

competitive against or cooperative with other agents.
● Finally, during execution, ignore the Q network, and just use the policy network 

to predict the action.



Demo: Predator-Prey

Episode 0 Episode 100,000

Gym environment: https://github.com/openai/multiagent-particle-envs



Models
Policy

Q network



Learning Curves

agent0 agent1

agent2 agent3

Mean Episode reward



Thank you


